常识|图灵奖得主杨立昆:人工智能比你更聪明吗?( 二 )


如今的人工智能有一个悖论:它功能极其强大、极其专业化,却没有一点常识。
现在让我们回过头来看前文提到的围棋 AI —— LeelaZero。Leela如果想要在 25 路盘面上立于不败之地,则需要更多专门针对 25 路围棋对战的数据以及更长时间的自我对局训练,才最终有可能获得全胜局面。但 Leela 不知道围棋的基本常识通用于不同盘面,也不懂得类推和移情。这也从另一个侧面反映出了 AI 的另一个“不聪明”之处——对于人类常识的缺失。
常识缺失的人工智能是什么样的呢?唤醒你的 Siri、Alexa、天猫精灵或者小爱同学,尝试着和它对话(最多) 两分钟,你就多多少少有些感触了。杨立昆在《科学之路:人,机器与未来》中也对此有过具体的描述:
一个翻译系统有时可能会产生一些滑稽的错误而不自知,自动驾驶汽车可以从点A行驶到点B,但它并不知道什么是驾驶员。比如虚拟助手可以报告交通信息,能调到你点播的广播电台,但如果你告诉它,“Alexa,我的手机掉进了浴缸。”它不会知道这代表着你的手机湿了,且需要更换,因为它只能在接受训练的范围内工作。如果想要系统更有效地回答问题,Alexa 必须具备一些常识,即一些有关世界运作方式及其物理规律的约束知识。
常识至关重要,它制约着我们与世界的联系,它能填补空白,弥补隐含的信息。我们看到一个坐在桌子旁的人,可能看不到他的腿,但知道他肯定有腿,因为我们对人类有一定的了解。我们的大脑还整合了物理学的基本定律,比如,如果有人打翻了眼前的玻璃杯,那么杯子里的水就会洒得满桌子都是。我们知道如果不拿住某个东西,它就会掉下去。我们还能够意识到时间流逝、万物运动。
我们在生命的头几个月和几年中逐渐了解世界的模型——我有意使用了与人工智能领域相同的词汇,这使我们可以将某个普通的句子补充完整。这个句子的其余部分并没有向我们提供有关整个句子的所有信息,但我们还是能够将这个句子补充完整,因为我们知道世界的运行规律。同样,当我们阅读一个文本时,可以或多或少预测到下一个句子;当我们观看一个视频时,能够或多或少预测到接下来一连串的动作和反应。
由此可见,人类常识对于培养人工智能的学习能力至关重要,否则它只是一个功能强大、专业化高,却没有任何概念、文化、什么都不懂且耗能极高的应用程序。
人类大脑——永远的神
到目前为止,人类的学习方法比任何一种人工智能的学习方法都更为有效。在人脑中,额叶专用于获取有关世界运转规律的常识,这就是智力的本质。动物学习的方法与人类学习的方法大致相同。有些物种的天赋更高,在鸟类中,乌鸦就特别有天赋。在海洋动物中,章鱼非常聪明。再说说猫,它们没有人类的推理能力,但依然比最聪明的机器拥有更多的常识,老鼠也一样。所有这些动物都通过观察来学习世界运转的规律,获得了可以增加生存概率的预测模型。如果人类能制造出像老鼠或松鼠一样聪明的机器,人工智能事业或许就成功了。
常识|图灵奖得主杨立昆:人工智能比你更聪明吗?
文章插图
也就是说,即便是最先进的人工智能系统也存在局限性,它们可能还不如一只猫聪明。此外,人工智能不仅在智识上比不上人类大脑,在功耗的节省上也远远落后于人类大脑。
虽然现代科学已经了解了大脑学习的原理,知道了大脑的结构,但重现其功能所需的计算量是无比巨大的,大约是每秒 1.5×1018 量级的操作。现在一块 GPU (图像处理器)每秒可执行 1013 次计算,功耗约为 250 瓦。为了达到人脑的计算能力,必须将 10 万个这样的处理器连接上功耗至少 25 兆瓦 的巨型计算机才能实现。这巨大的能量消耗是人脑的 100 万倍!