拓展你的视野!UCLEMNLP 2021Or ucla( 三 )

结论和未来影响
在文章中,我们构建了一个新的地区多样常识推理数据集 GD-VCR。我们在 GD-VCR 上评估模型性能,发现不同区域之间存在很大差异。最后我们分析了性能差异的来源:1) 具有地区特征的场景,和 2) QA pair 的推理层次。我们希望这篇文章不仅可以启发研究者去提高视觉常识推理模型在地区多样化场景上的泛化能力。我们还希望能借此文章拓宽研究人员的视野,以更加包容的态度对人工智能系统的世界通用性这一现实问题产生更多的思考。
相关文献
[1] From Recognition to Cognition: Visual Commonsense Reasoning. Zellers et al., CVPR 2019.
[2] Visually Grounded Reasoning across Languages and Cultures. Liu et al., EMNLP 2021.
[3] SituatedQA: Incorporating Extra-Linguistic Contexts into QA. Zhang et al., EMNLP 2021.
拓展你的视野!UCLEMNLP 2021Or ucla
文章插图
雷锋网