消费者|MarTech营销数据闭环:数据应用( 二 )


  1. 2021 年「品牌周年庆活动」活动由于受到疫情影响,只在上海地区小范围内宣传和举办,投入较小,虽然 ROI 高达 5.9,但绝对销售额只有 55.4 万,完全没达到营销目标
  2. 在 「618 大促」和「国庆大促」中,ROI 首次出现
综上分析,可以看到,某服装品牌的营销活动策略出现了很大问题,全国范围内营销效率下滑,上海地区甚至出现营销亏损,需要大力整治。
四、客户关系管理当品牌拥有 PII 数据和交易数据之后,就出现了客户关系管理系统 CRM,通常这些数据的用法,是基于 RFM 模型做用户分层(Customer Segmentation)。没有任何一个现代企业无差别的对待所有消费者,资源紧缺的情况下,把营销预算提供给更有价值的消费者符合人性驱动的市场经济原则。
经济学中有一句话「凡选择必有歧视」,这里的歧视是一个中性词,当企业针对不同群体提供差异化服务时,比如只给 VIP 提供额外优惠和更体贴的服务,本质上是歧视了非 VIP 客户。
经常会有人对所谓「价格歧视」愤愤不平,实际上无论喜欢不喜欢,价格歧视是客观存在的,不以某个人、某个组织、甚至是国家领导人的意志为转移,除非我们回到计划经济。
本质上,品牌追求的是边际平衡,也就是花在 VIP 身上的营销成本和 VIP 带来的营收一定是边际平衡的。
早些年,我去麦当劳点餐,经常看到有些人手握一把优惠券,而我只能原价购买,但我并不觉得难受,因为我不经常吃麦当劳,自然也会不花时间去收集优惠券。
本质上,麦当劳是用纸质优惠券对不同人群进行价格歧视,用价格来区分人群。像我这种非目标人群,自然享受不到优惠。
现如今,大量的交易在线上进行,数字化营销让价格歧视执行起来更加方便,而且玩法五花八门。实际上,20% 的消费者贡献 80% 的收入是著名的二八理论,因此品牌需要对接触的消费者进行优先级划分,找到自己最重视的 20%。RFM 模型(最近购买时间 Recency、购买频率 Frenquency、购买金额 Monetary) 3 个指标就可以把消费者分成重要价值、重要发展、重要保持、重要挽留等 8 个细分用户。
消费者|MarTech营销数据闭环:数据应用
文章插图
从 RFM 模型的定义可以看出来,所有指标都在交易数据中可以获取,而且维度只有 3 个,只需要一张如下交易订单表即可。需要强调的是这里的交易订单必须是支付且妥投的个人订单,把团购订单、大客户订单去掉,否则对细分人群有影响。
R 是最近一次消费时间间隔,也就是当前日期 12 月 11日 减去 12 月 3 日,等于 8;
F 是最近一个周期的消费频次,周期需要根据行业确定,比如快消品等高频品类,一般每个月都会复购,那么把周期定为 3 个月即可。对于中频品类,要看平均复购一次是多久,然后取 3 倍时间为一个统计周期;
M 是最近一个周期的消费金额,100 + 150 + 120 = 370。
【 消费者|MarTech营销数据闭环:数据应用】计算完成如下表:
最简单的方式就是把 RFM 的数值按照某个阈值一分为二,这个阈值的选取有以下方法:
  1. 采用均值方法划分,比如有 1000 个会员取到的 R 平均值是 10,那么 8 就是低
  2. 采用中位数方法划分,这种方法可以将人群一分为均等两份
  3. 采用 20 分位数划分,这个原理就是二八原则,要选出真正高价值的 20% 用户
除此之外,还有更复杂分段打分法,不在这里赘述,有机会单开一文讲解。
接下来就是按照细分出的 8 个用户群,执行不同的营销策略和持续优化模型。RFM 模型优化,主要还是在于阈值的调整。要随着最终划分的人群以及相关的运营效果、活动规律,调整阈值的设定,最终达到一个最合理的划分。