人脸识别|10 位 CXO 眼里的 2021 安博会( 五 )


3、客户更看重完整解决方案落地能力,全栈的核心技术能力,持续运营的能力,特别是在平安城市和数字城市这种复杂程度高的大型工程上,简单产品拼凑的集成方案或者标准化方案很难获得客户认可。
我认为所谓的“去安防化”趋势,只是安防融入了更广阔的数字城市、智慧城市概念这意味着AI等数字技术有更广阔的应用场景,同时,AI安防的市场空间依然很大。
这两年市场变化很快,以萨一直以来坚持两个非常重要的价值判断:第一是“坚持以客户为中心”,第二是“通过小场景推动大变革”这两个理念,我们自始至终不会改变,目前我们看到行业里有越来越多的厂商也认识到了这一点,变得更加务实。
另外随着“十四五”规划的逐步推进,我们以萨也感受到数字技术能够结合的场景会越来越多,无论是产业的数字化转型、数字政府建设、智慧城市建设,还是未来的“双碳”目标,人工智能+大数据技术都大有可为。
瑞莱智慧副总裁唐家渝:AI产业从粗放到高质量发展,如何保证AI应用的安全性是重要命题今年的安博会有两点感受比较明显:

  • 场景化趋势明显,过去大家追求通用的AI能力,现在大家更追求对垂直场景的深入理解
  • 安全治理更受重视,随着数据安全法、算法治理规范等相关条例的出台,人脸识别厂商对安全问题的重视程度提高,开始探索安全可信的方案,比如后端治理上,数据采集后的脱敏存储,结合隐私计算的人脸识别方案,AI安全防火墙、AI换脸检测等
AI落地困境主要有两个方面:技术层面,目前的深度学习技术比较依赖有标注的数据,垂直场景下高质量标注数据缺乏,导致在不同应用场景扩展时存在一定周期,人脸识别领域的标签数据虽然更容易获得,但在趋严的合规要求下,对数据采集、标注、存储等提出更高要求,之前粗放式的应用会受到限制。
另外,以深度学习为代表的AI技术存在结构性缺陷,不安全、容易遭受攻击,比如对抗样本、算法后门等算法漏洞的存在,导致系统有被攻破的风险,尤其随着计算机视觉技术在各个领域广泛应用,很多场景与公共安全、社会安全,以及个人财产安全高度绑定,这也导致安全隐患的加剧。再者比如通过AI换脸进行网络欺诈等技术滥用问题,人脸的隐私性难以得到保障,直接影响到用户对技术的信任度和使用意愿。
目前,整个AI产业已经从之前粗放式的高速发展进入到高质量发展的阶段,随着公众对于AI安全性的关注度提升,以及监管政策的出台和引导,未来AI行业将是发展与治理协同的阶段,如何保证AI应用的安全性是一个重要命题。我们认为安全AI的新兴领域,比如AI安全防火墙、基于隐私计算的人脸识别方案等会很快迎来爆发。同时,开拓新的赛道,需要对场景的深刻理解,同时要保证核心技术的绝对优势。
瑞莱智慧专注安全AI方向,聚焦AI领域的安全问题,比如数据安全治理、算法可靠性提升,以及保障AI技术应用的安全可控。
安全AI市场的矛盾点在于,用户往往想依靠技术一下子打造出绝对安全可控的AI系统,但AI安全风险不是单点的问题,其安全建设也不是简单的要求AI服务提供商做整改就能够解决的。本质上不存在绝对意义上的安全,信息领域的安全一定是处于动态平衡的状态,同时这也是一套体系化的工作,需要靠技术、管理框架、制度规范等结合。
大疆行业应用高级解决方案工程师王鹏:坚持开放生态,降低开发者门槛,增进合作共赢2017年,大疆正式成立行业应用部门,但早在2015年就已经有用户开始将无人机应用于安防等行业领域。