矩形的性质和判定定理有哪些,平行四边形的性质和定理包括判定都分别有什么意义与不同?

·矩形的性质:
1.矩形的4个内角都是直角;
2.矩形的对角线相等且互相平分;
3.矩形所在平面内任一点到其两对角线端点的距离的平方和相等;
4.矩形既是轴对称图形,也是中心对称图形(对称轴是任何一组对边中点的连线),它至少有两条对称轴 。对称中心是对角线的交点 。
5.矩形是特殊的平行四边形,矩形具有平行四边形的所有性质
6.顺次连接矩形各边中点得到的四边形是菱形
·矩形的判定:
①定义:有一个角是直角的平行四边形是矩形
②定理1:有三个角是直角的四边形是矩形
③定理2:对角线相等的平行四边形是矩形④对角线互相平分且相等的四边形是矩形
矩形的面积:S=长×宽=ab 。

矩形的性质和判定定理有哪些,平行四边形的性质和定理包括判定都分别有什么意义与不同?

文章插图
平行四边形的性质和定理包括判定都分别有什么意义与不同?
[编辑本段]平行四边形的性质和判定
1. 定义: 两组对边分别平行的四边形叫做平行四边形 。
2.性质:
⑴如果一个四边形是平行四边形,那么这个四边形的两组对边分别相等 。
(简述为“平行四边形的对边相等”)
⑵如果一个四边形是平行四边形,那么这个四边形的两组对角分别相等 。
(简述为“平行四边形的对角相等”)
⑶夹在两条平行线间的平行线段相等 。
⑷如果一个四边形是平行四边形,那么这个四边形的两条对角线互相平分 。
(简述为“平行四边形的两条对角线互相平分”)
⑸平行四边形是中心对称图形,对称中心是两条对角线的交点 。
3.判定:
(1)如果一个四边形的两组对边分别相等,那么这个四边形是平行四边形 。
(简述为“两组对边分别相等的四边形是平行四边形”)
(2)如果一个四边形的一组对边平行且相等,那么这个四边形是平行四边形 。
(简述为“一组对边平行且相等的四边形是平行四边形”)
(3)如果一个四边形的两条对角线互相平分,那么这个四边形是平行四边形 。
(简述为“对角线互相平分的四边形是平行四边形”)
(4)如果一个四边形的两组对角分别相等,那么这个四边形是平行四边形 。
(简述为“两组对角分别相等的四边形是平行四边形”
(5)如果一个四边形的两组对边分别平行,那么这个四边形是平行四边形 。
(简述为“两组对边分别平行的四边形是平行四边形”)
[编辑本段]矩形的性质和判定
定义:有一个角是直角的平行四边形叫做矩形.
性质:①矩形的四个角都是直角;
②矩形的对角线相等 .
注意:矩形具有平行四边形的一切性质 .
判定:①有一个角是直角的平行四边形是矩形;
②有三个角是直角的四边形是矩形;
③对角线相等的平行四边形是矩形 .
[编辑本段]菱形的性质和判定
定义:有一组邻边相等的平行四边形叫做菱形.
性质:①菱形的四条边都相等;
②菱形的对角线互相垂直,并且每一条对角线平分一组对角 .
注意:菱形也具有平行四边形的一切性质 .
判定:①有一组邻边相等的平行四边形是菱形;
②四条边都相等的四边形是菱形;
③对角线互相垂直的平行四边形是菱形
(4).有一条对角线平分一组对角的平行四边形是菱形
[编辑本段]正方形的性质和判定
定义:有一组邻边相等并且有一角是直角的平行四边形叫做正方形.
性质:①正方形的四个角都是直角,四条边都相等;
②正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角 .
判定:因为正方形具有平行四边形、矩形、菱形的一切性质,所以我们判定正方形有三个途径
①四条边都相等的平行四边形是正方形
②有一组临边相等的矩形是正方形
③有一个角是直角的菱形是正方形
够全了吧?楼主还要其它四边形的吗?呵呵 。。我给你弄个梯形的来吧
梯形及特殊梯形的定义
梯形:一组对边平行而另一组对边不平行的四边形叫做梯形.(一组对边平行且不相等的四边形叫做梯形.)
等腰梯形:两腰相等的梯形叫做等腰梯形.
直角梯形:一腰垂直于底的梯形叫做直角梯形.
[编辑本段]等腰梯形的性质
1、等腰梯形两腰相等、两底平行;
2、等腰梯形在同一底上的两个角相等;
3、等腰梯形的对角线相等;
4、等腰梯形是轴对称图形,它只有一条对称轴,一底的垂直平分线是它的对称轴.
[编辑本段]等腰梯形的判定
1、两腰相等的梯形是等腰梯形;
2、在同一底上的两个角相等的梯形是等腰梯形;
【矩形的性质和判定定理有哪些,平行四边形的性质和定理包括判定都分别有什么意义与不同?】3、对角线相等的梯形是等腰梯形.