达摩院|阿里达摩院公布新型量子芯片

达摩院|阿里达摩院公布新型量子芯片

文章图片

达摩院|阿里达摩院公布新型量子芯片

在阿里巴巴 , fluxonium不再是学术界演示原理的粗糙玩具 , 而已然成为可与主流平台争锋的工业级利器 。
【达摩院|阿里达摩院公布新型量子芯片】
作者 | 赵广立
成立 5 年 , 阿里巴巴达摩院量子实验室首次全面披露量子计算研究进展“成绩单” 。

3 月 24 日 , 全球物理学盛会2022APS年会上 , 阿里巴巴达摩院量子实验室公布了一系列最新进展 , 包括材料、相干时长、门操控、量子计算编译方案等 。 其中 , 采用新型量子比特fluxonium的两比特门操控精度高达99.72% , 达到该技术路线的全球最佳水平 。

图:阿里巴巴达摩院量子实验室两比特(fluxonium)操控精度99.72%
美国物理学会年会(APS March Meeting)是全球最大的物理学术会议之一 , 也是各方汇报量子计算机最新进展的盛会 。 与会者除了学术机构团队外 , 还有IBM、谷歌、微软和阿里巴巴等投入量子计算的主要国际企业团队 。
会上 , 达摩院量子实验室与全球科学家分享了8个学术报告 。 “重头戏”之一即:基于新型超导量子比特fluxonium , 达摩院量子实验室成功设计并制造出两比特量子芯片 , 实现了单比特操控精度99.97% , 两比特iSWAP门操控精度最高达99.72% , 取得此类比特全球最佳水平 , 性能逼近业界主要量子研发团队采用的传统transmon比特 。
同时 , 该实验室也在此芯片上实现了另一种比iSWAP编译能力更强的原生两比特门SQiSW , 操控精度达99.72% , 是该量子门在所有量子计算平台上实现的最高精度 。

图:阿里巴巴达摩院量子实验室两比特(fluxonium)量子芯片
据了解 , 相比传统的transmon比特 , fluxonium具备更高操控精度的理论优势 , 但这一理论优势的实现需要克服众多技术难关 。 此次会议上 , 以fluxonium为主题的报告有数十个 , 报告团队除了达摩院量子实验室 , 还有来自马里兰大学、普林斯顿大学、芝加哥大学、加州大学伯克利分校、麻省理工学院/Lincoln Lab等的超导量子计算研究组 。
达摩院量子实验室的最新成果 , 初步显现了fluxonium的优势 , 而这依赖于理论、设计、仿真、材料、制备和控制多个课题上的突破和创新 。
达摩院量子实验室发明了一种利用钛氮化铝(TAN)材料的外延体系制造量子器件的新方法 , 其在极低的微波损耗下依然能实现动态电感的急剧增加 。 该材料有望成为量子实验室下一代fluxonium芯片的核心部件 。
在另一个芯片制备的课题上 , 达摩院量子实验室制备的基于氮化钛的超导量子比特 , 在相干时长这一最关键的性能指标上 , 可重复地达到300微秒 , 具备世界一流水平 。
量子芯片设计自动化的一个核心问题是提升仿真计算速度 。 在此课题上 , 达摩院量子实验室研发的基于表面积分方程方法的超导量子芯片电磁仿真工具 , 在电路参数和界面损耗的计算上 , 相比于通常采用的有限元方法取得了两个数量级的加速 , 极大地推进了量子芯片的设计优化 。
在另一个大幅提升大规模量子芯片设计能力的工作中 , 达摩院量子实验室通过将芯片优化与量子操控都集成到梯度优化的框架中 , 在更大参数空间中高效联合优化比特设计方案与比特操控方案 。
此外 , 达摩院量子实验室还在fluxonium上验证了自研的超导量子芯片整体计算性能的优化方案 , 包括针对超导架构的单比特门通用优化编译方案 , 针对超导芯片上的另一种原生操控SQiSW门的即时最优编译方案等 。 该优化方案可以大幅提升量子芯片的整体性能指标 。