生命周期|如何做好活跃用户的运营?( 二 )


Kmeans主要是通过数据挖掘的方式找出有相似特点的用户,实现物以类聚人以群分,用户进行过聚类后通过分析各组的特点也可以针对性地进行运营。
03 用户分层应用案例下面我们通过一个案例将用户分层的理论落地,案例仅为便于说明问题而虚构。首先我们假设活跃用户数的变化趋势如下图,乍一看每月的活跃用户数在持续增长,看似还不错。
但是我们要警惕的是虚荣指标给我们的错觉,我们可以把累计的用户数放进来,也就是截止到当前的累计用户数,活跃用户数除以累计用户数得到用户的活跃度,表征的是活跃用户占整体的比例,这样一看发现好像比例在逐渐减小。
生命周期|如何做好活跃用户的运营?
文章插图
我们可以继续细分,可以根据累计用户数计算出新增用户数,发现活跃用户中很大比例是新增的用户。
生命周期|如何做好活跃用户的运营?
文章插图
相似地,我们可以把累计用户分为新用户和老用户,把活跃用户分为新活跃用户和老活跃用户,相似的,可以得到新老用户的活跃度,我们发现老用户的活跃度更低了。
生命周期|如何做好活跃用户的运营?
文章插图
我们想要看老用户中到底是怎么了?我们把活跃用户再进行细分,分成活跃、不活跃用户2大类,活跃用户我们包括了新活跃用户和老用户活跃,然后老用户活跃我们又分成了一般活跃用户,忠诚用户和回流用户,不活跃用户主要包括沉默用户和流失用户。
我们发现老用户活跃主要是因为一般活跃和忠诚用户的活跃都很少,但是新用户很多,说明我们需要做好新用户引导和留存,同时促使用户向忠诚用户转化。
生命周期|如何做好活跃用户的运营?
文章插图
进而可以通过对每个月用户进行细分,分析同一月份不同层级的用户构成,从而判断用户成长的健康状况。
生命周期|如何做好活跃用户的运营?
文章插图
但是为了更加清晰,我们按照活跃、不活跃分别看用户的构成,这样的话能更清楚地看到各层用户的健康状态。
生命周期|如何做好活跃用户的运营?
文章插图
用户是在产品的生命周期中不断成长的,我们除了会看某个时间点用户的活跃组成情况,我们可能还要关注用户的成长路径:每天有多少新增用户变成了活跃用户?有多少活跃用户变得不活跃?有多少忠诚用户变得不活跃?又有多少流失用户被我们召回等,这样有助于我们更直观地分析用户的去向,更精准地定位问题,从而针对性地进行动作。
比如可以通过桑基图的形式展示某产品1月份新增用户在接下来的成长路径,发现在2月份有相当比例的用户没有再活跃而变成沉默用户,需要及时通过运营手段触达这部分用户,以防止其在3月份流失。
生命周期|如何做好活跃用户的运营?
文章插图
相似地,对于某段时间的活跃用户或者沉默用户,也可以通过类似的方式进行监控,以便及时了解用户的去向,及时进行干预,以防用户流失。
04 用户分群应用案例以上通过一个案例讲述了用户分层的思路和方法,下面再通过一个案例介绍用户分群的应用。用户分群中有一些比较常用的方法;比如可以通过经验型的RFM模型,从不同维度对用户进行评价,进而划分成不同价值的用户进行运营;或者通过大数据挖掘的聚类算法等,挖掘大量用户的相似特征实现物以类聚人以群分的目的。
这些方法已经很成熟了,而且很多人已经耳熟能详了,就不在这里赘述了。今天给大家介绍另外一种比较重要的分群方法—同期群分析,所谓同期群分析就是针对分层用户的进一步细分,对处于相同生命周期的用户进行分群,看相似分群的效果。