智东西内参|德勤深度:140亿元大蛋糕!制造业中的 产业链( 二 )


当前主流的制造业生产方式以流水线生产为标志,在这种模式下,企业竞争策略主要是产品多样化策略和成本控制策略。受限于标准化生产过程,消费者曰益增长的个性化需求难以被精准满足。随着消费升级,制造业 提高供给质量的必要性、迫切性不断增加。
在人工智能技术的引领下,刚性生产系统转向可重构的 柔性生产系统,客户需求管理能力的重要性不断提升, 制造业从以产品为中心转向以用户为核心。大规模生产 转向规模化定制生产,数据要素的附加值提高,生产者主导的经济模式转向消费者主导的经济模式,满足消费 者个性化需求成为企业的重要竞争策略,逐渐替代以往 企业依靠规模经济来降低成本的竞争策略。
人工智能还将帮助中国制造业应对产业链外迁的风险。 产业链外迁通常意味着企业搬离、就业流失、税收下降,特别是在疫情对中国经济造成一定冲击的情况下, 以服装为代表的制造业比较优势开始下降,行业规模以下企业众多,被动加速产业转移,由此引发居民收入下降和农民工失业风险,这些风险需要积极应对。中国需要加强基础研发力度,发展高技术制造业,推进制造业服务化,以人工智能赋能产业数字化转型,使产业拥有自己护城河的同时,增加居民收入和拉动就业。
在全球制造业的价值分配链中,中国并未占领技术研发、 产品设计、高附加值服务等产业链上的高价值部分,而借助人工智能可以加速中国向产业价值链高端攀升。
二、制造业+AI产业结构人工智能经过60多年的演进,已发展成多学科高度交叉的复合型综合性学科,涵盖计算机视觉、自然语言理解、语音识别与生成、机器人学、认知科学等领域的研究。人工智能与制造业融合,是指将人工智能技术应用 到制造业,使制造业在数字化和网络化的基础上,实现机器的自动反馈和自主优化。从“制造业+人工智能”的视角理解,其产业结构包含三层,如下图所示。
智东西内参|德勤深度:140亿元大蛋糕!制造业中的 产业链
文章插图
制造业+AI产业产业结构
1、基础层,不可或缺的软硬件资源“制造业+人工智能”的基础层包括人工智能芯片、工业物联网,它们为人工智能提供在制造业落地所需的软硬件资源。
复杂的工业问题需要人工智能算法芯片高效运算来解决,当前能适应深度学习需求的芯片类型主要有 GPU、FPGA和ASIC,三者在性能、定制化程度、功耗、 成本等方面具有不同特点。
智东西内参|德勤深度:140亿元大蛋糕!制造业中的 产业链
文章插图
不同类型人工智能芯片比较
人工智能芯片产业链分为上游算法设计、中游芯片制造 以及下游应用。
上游底层算法架构设计通常由具备丰富经验的大企业负责。晶圆工厂负责测试芯片算法效果。软件及其他专用材料、设备的供应商为中游企业提供所需硬件。
中游芯片厂商对算法架构设计及IP核授权企业依赖度较高,上 游架构交付企业对中游芯片制造企业议价能力较高。中游企业负责人工智能芯片的设计、制造以及测试。
实力较强的芯片企业可拓展业务至底层算法架构设计环节,整合芯片、模块及终端产品,提供一体式解决方 案,向下游各类企业提供人工智能运算产品和服务。中游不具备芯片设计能力的企业平均盈利水平较低。
处于产业链下游的是各类工业产品和消费电子制造商。
人工智能芯片在制造业应用领域包括智慧工厂、智慧家电、自动驾驶等。由于人工智能芯片附加值高且产能有限,下游厂商对芯片制造企业的议价能力有限。
智东西内参|德勤深度:140亿元大蛋糕!制造业中的 产业链