文章图片
文章图片
背景概述参加了一次某大厂能源管理产品的线上推介分享会 , 但是关于算法推荐架构这部分分享嘉宾细节基本没讲就宏观的概括了一下 , ppt上也只占了三分之一的大小 , 看回放的时候感觉还是有些内容的 。 自己简单用processon临摹了一下 , 有些看不清的内容也人肉补全了 。
本文主要分析一下这个某大厂的整体暖通智控产品的实现逻辑和方法 。
技术架构概述整个算法架构两部分组成
- 实时推理部分:基于实时采集的数据和预设的配置及发布的算法进行快速的最优控制参数求解并下发命令或推送建议 。
- 离线训练部分:包含模型的对象 , 分类 , 以及模型评价指标等 , 以及与线上模型迭代的衔接 。
【EDA:探索性数据分析】
Exploratory Data Analysis , 名字太专业了 , 其实也是我经常干的一些事没想到说法这么高级 。
【苹果|一张某厂的建筑暖通「AI节能架构图」解读】通过数据可视化工具Excel或bi或spss进行原始数据或指标数据进行分析判断 , 察觉里面一些相关性和异常特点或者规律 , 还有很多高级统计的工具和方法可以进行一些降维处理 。
2)数据模型相关算法
- Seq2Seq :是一种循环神经网络的变种 , 自然语言处理中的一种重要模型 , 可以用于机器翻译、对话系统、自动文摘 。 最直接的就是在钉钉和腾讯会议的自动会议纪要系统中抽取的摘要和关键词场景 。
- Nbeats:实现能让模型的分解具有可解释性的时间序列预测 。
- XGBoost:是大规模并行boosting tree的工具 , 它是目前最快最好的开源提升树 boosting tree工具包 , 比常见的工具包快10倍以上 。
- Prophet的方法是将时间序列看成是关于t的一个函数 , 用拟合函数曲线的方法进行预测 , 所以这和传统的时间序列模型有本质上的区别 , 他更倾向于机器学习的建模方式
3)设备和管道模型
管道模型写得比较含糊 , 二次侧模型应该是对应的扬程或者压力相关的预测 。
天气预测单独拿出来了 , 应该是把下雨 , 风速等相关影响冷塔效率的关键要素也追加进去了 。
上面两条在分析的过程中又发现自己完全多想了 。
- 原来第一排的模型名字 , 只是分类而已 , 所以并没有天气风俗降雨量那些模型
- 二次侧模型基本就是完整的制冷量模型的基础指标数据了 , 并没有包含水力平衡要素 。 还是属于比较基础模型 。
- 模型的迭代和离线训练都是直接从tsdb获取数据 , 按理说飞浆这么强大的ai工程平台应该会做一些更高级的大数据技术栈的离线处理方式 , 可能还是因为单独建筑暖通项目部署的时候还是到达不了“大数据”的程度 。
- 整体来看离线训练部分的模型对象还是比较常规 , 没太多亮点和特色信息 。
实时推理1)数据范围
- 主要两部分 , 一个是实时采集数据包括天气和设备物接入时序类数据 , 第二部分是静态约束数据包括预设的边界条件还有设备层级 , 其实就是设备之间的逻辑链路关系
- 时序数据存在tsdb , 配置信息在mysql , 确实连技术栈都这么基础 , 不像百度的基因 。
2)相似日计算
- 小米|小米要颠覆洗衣机行业 米家洗烘一体机12kg双12仅1999元
- 2022年度作者评选上线
- Intel|DIY越来越复杂 Intel振臂一呼:PC需要重启
- 小米科技|反噬开始了!苹果陷入困境,“下一个华为”开始崛起了
- miui14|用了四年的安卓终于退休了,换了iPhone14Pro体验一周,谈谈体验
- 安卓|小米13遭疯抢!雷军回应对标iPhone被笑话:有机会全面超越苹果
- 智能手机|换机周期将创历史新高:长达43个月 你多久换一次?
- 刘强东|刘强东、王石都阳了,透露了一个强烈的信号
- 北斗与GPS,未来究竟是谁的天下?其实是一场中美国力的较量
- 高通骁龙|官方超频 功能优化 性能超越骁龙888!一文读懂联发科天玑8200