trAI芯片创业公司们走到分岔口( 二 )


但要成为AI芯片领域的领导者,卢涛认为有三个关键:预判+冒一点风险+一点运气。
“Graphcore在2016年成立时,只能追赶。对于新的领域,如果能提前预判,就可能在领域里具备领先性。”卢涛具体解释。
【 trAI芯片创业公司们走到分岔口】2016年,传统的机器视觉模型ResNet已经存在,这时候Graphcore需要追赶,作为追赶者需要做一些预判发现机会。2020年,Graphcore关注到了Transformer技术,这种技术本来是用于自然语言处理的底层技术,但业界出现了用Transformer做计算视觉的趋势,Graphcore率先开始支持。
到2021年下半年,一些基于Transformer的视觉模型,比如ViT成为了热门。由于有提前的预判,Graphcore对于新的基于Transformer的视觉模型以及GNN都有很好的支持,很多创新和前沿的模型比GPU支持得更好。
trAI芯片创业公司们走到分岔口
文章插图

正是凭借着创新的IPU硬件和不断完善的Poplar软件生态,Graphcore在2021年有不少应用案例。在2021年下半年,安捷数科利用IPU进行气象预测、精准灌溉、防灾减灾。深势科技完成分子动力学模拟软件DeePMD-kit向IPU硬件的迁移,探索基于分子动力学模拟的科学计算、药物设计、材料设计和新型能源等场景。
在金融保险领域,牛津-英仕曼用IPU进行股价预测;Tractable与Graphcore达成合作,加速事故和灾害恢复。电信方面,Graphcore与韩国电信合作发布了IPU云。在城市环境可持续发展领域,升哲科技基于IPU进行城市相关可持续发展方面的应用。在医疗、生命科学领域,Graphcore与斯坦福大学医学院合作,使用IPU以“医疗+隐私计算”为核心方向进行了一些研究和探索。
但这些应用案例多为前沿技术和应用的探索,不是大规模的商业应用。对此卢涛表示,“商业领域内,我们有一些大规模应用的客户,他们更关注于自身业务给客户带来的价值,很少和技术厂商一同发布新闻。前沿的研究更加开放,研究者也希望结果能让更多人看到,自然会有更多可以分享的案例。”
他也同时透露,2022年,Graphcore会有一些和国内公有云厂商的IPU产品发布,也会有新的硬件产品的发布。Graphcore也会在一些相关的AI应用领域中会进一步加深合作,比如AI辅助科研、自动驾驶等是他们2022年在AI应用或垂直领域中比较重要的方向。
值得一提的是,Graphcore的IPU与CPU的硬件解耦,有助于IPU更好的拓展市场。比如在BERT训练中,Graphcore采用一台2颗CPU的服务器和64颗IPU,比例为1:32,在计算机视觉模型中的比例则基本为1:8。但如果是英伟达或者英特尔的系统,无论何种场景和模型,都会有一个固定的CPU和GPU比例,比如1:4或1:2。
trAI芯片创业公司们走到分岔口
文章插图

写在最后
AI芯片的竞争最终依旧会演变为生态、商业的竞争。在AI芯片的早期阶段,虽然参与者众多,但各自都在团队组建和产品开发的阶段,AI芯片公司间并没有真正的竞争关系。随着AI芯片的发布,以及落地的推进,AI芯片公司之间的竞争才真正开始。
当越来越多的领域和客户开始关注AI的规模应用和落地时,自然会加剧AI芯片公司之间的竞争,这时候,已经不再单纯比拼硬件性能,软件和生态才更能打动最终用户。
2022年,我们将看到AI芯片公司间的竞争日趋激烈,我们也将慢慢看到AI芯片公司们真正的实力。雷峰网