x1x2公式韦达定理

韦达定理公式
韦达定理:两根之和等于-b/a,两根之差等于c/a.
x1*x2=c/a
x1+x2=-b/a
由代数基本定理可推得
任何一元 n 次方程 在复数集中必有根 。因此,该方程的左端可以在复数范围内分解成一次因式的乘积: 其中是该方程的个根 。两端比较系数即得韦达定理 。韦达定理在方程论中有着广泛的应用 。简单的说就是x+y=-b/a xy=c/a 一元二次方程ax^2+bx+c (a不为0)中 b^2-4ac≥0时 x1+x2=-b/a x1*x2=c/a 一元二次方程ax^2+bx+c (a不为0)中 设两个根为x和y 则x+y=-b/a xy=c/a 韦达定理在更高次方程中也是可以使用的 。一般的,对一个n次方程∑AiX^i=0 它的根记作X1,X2…,Xn 我们有 ∑Xi=(-1)^1*A(n-1)/A(n) ∑XiXj=(-1)^2*A(n-2)/A(n) … ∏Xi=(-1)^n*A(0)/A(n) 其中∑是求和,∏是求积 。
韦达定理即根与系数的关系
对于一元二次方程ax^2+bx+c=0来说,若它的两个根为x1、x2,则 x1+x2=-b/a x1*x2=c/a 对于一元三次方程ax^3+bx^2+cx+d=0来说,若它的三个根为x1、x2、x3,则 x1+x2+x3=-b/a 1/x1+1/x2+1/x3=-c/d x1*x2*x3=-d/a 对于一元n次方程x^n+a1*x^(n-1)+……+an-1*x+an=0来说(式中a1、an-1、an的1、n-1、n为a的下标),若它的n个根为x1、x2、……、xn 。则 x1+x2+……+xn=-a1 x1*x2+x1*x3+……+xn-1*xn=a2 x1*x2*x3+x1*x2*x4+……+xn-2*xn-1*xn=-a3 …… x1*x2*……*xn=(-1)^n*an 以上就是根与系数的关系 。

x1x2公式韦达定理

文章插图
韦达定理公式变形
x12+x22=(x1+x2)2-2x1x2,1/x12+1/x22=(x12+x22)/x1x2,x13+x23=(x1+x2)(x12-x1x2+x22)等 。
【x1x2公式韦达定理】法国数学家弗朗索瓦·韦达于1615年在著作《论方程的识别与订正》中改进了三、四次方程的解法,还对n=2、3的情形,建立了方程根与系数之间的关系,现代称之为韦达定理 。
韦达最早发现代数方程的根与系数之间有这种关系,因此,人们把这个关系称为韦达定理 。韦达在16世纪就得出这个定理,证明这个定理要依靠代数基本定理,而代数基本定理却是在1799年才由高斯作出第一个实质性的论性 。
韦达定理的意义
根的判别式是判定方程是否有实根的充要条件,韦达定理说明了根与系数的关系 。无论方程有无实数根,实系数一元二次方程的根与系数之间适合韦达定理 。判别式与韦达定理的结合,则更有效地说明与判定一元二次方程根的状况和特征 。韦达定理最重要的贡献是对代数学的推进,它最早系统地引入代数符号,推进了方程论的发展,用字母代替未知数,指出了根与系数之间的关系 。韦达定理为数学中的一元方程的研究奠定了基础 。