功耗|既快又准并且低开销!一作亲解MICRO 2021最佳论文:一种自动化功耗模拟架构

功耗|既快又准并且低开销!一作亲解MICRO 2021最佳论文:一种自动化功耗模拟架构
文章插图

由于摩尔定律效用放缓,在设计芯片时,伴随着性能的提升,功耗也与日俱增。为了更加了解功耗,就要对出现的各种问题进行模拟,而真实模拟代价太大。就在这时,APOLLO应运而生,在芯片设计和运行时期,都能够对功耗进行既快又准确地预测。
作者 | 谢知遥
整理 | 王晔
编辑 | 青暮
第54届IEEE/ACM计算机体系结构顶会MICRO 2021于2021年10月16-20日作为全球在线活动举办。希腊雅典作为主办城市进行转播。
IEEE/ACM 微体系结构国际研讨会(IEEE/ACM International Symposium on Microarchitecture)是介绍和讨论先进计算和通信系统创新微架构思想和技术的主要论坛。本次研讨会汇集了与微架构、编译器、芯片和系统等相关领域的研究人员,就传统微结构主题和新兴研究领域进行技术交流。
来自杜克大学的谢知遥介绍了他们团队的最新工作《 APOLLO: An Automated Power Modeling Framework for Runtime Power Introspection in High-Volume Commercial Microprocessors 》,该论文获得了MICRO2021最佳论文奖(Best Paper Award)。
功耗|既快又准并且低开销!一作亲解MICRO 2021最佳论文:一种自动化功耗模拟架构
文章插图

谢知遥是杜克大学计算机工程专业的博士生、 致力于EDA/VLSI 设计机器学习算法,擅长机器学习、电子设计自动化、VLSI设计、编程。
他的导师是陈怡然教授。陈怡然教授是杜克大学电子与计算机工程系教授,计算进化智能中心主任,致力于新型存储器及存储系统,机器学习与神经形态计算,以及移动计算系统等方面的研究。
功耗|既快又准并且低开销!一作亲解MICRO 2021最佳论文:一种自动化功耗模拟架构
文章插图

他们的工作APOLLO是针对于现代化的商业CPU或Micro processors所研发的一个自动化的功耗模拟架构(Power-Modeling Framework)。
AI科技评论有幸邀请到谢知遥,为我们亲自解读这篇论文的来龙去脉。
以下,AI科技评论对谢知遥的分享进行了不改变原意的整理:

1

原因及目的
该工作是在CPU设计或运行中所遇到的现实性问题的基础之上进行研究的。
首先第一个也是最大的问题。在CPU设计时期需要对power有更多的了解,而我们现在对power了解是不够的。这取决于设计时的trade off,即权衡或取舍。芯片设计最大的一个trade off是performance and power,即要好的性能,还是要低的功耗。
设计师在设计每一代芯片时都要提升芯片的性能,通常反应在提升IPC或者最大频率等方面。在过去几十年间,因为摩尔定律,性能的提升较为容易。
但由于摩尔定律效用放缓,导致性能提升变得不再那么容易。在这种情况下,设计师就需要在微架构上有更多的创新,但在这个过程中,伴随运行速度的增加,功耗往往也不断增加。
另一方面输电资源(power delivery sources)技术的发展非常缓慢。首先输电线上的电阻很大,导致不能提供足够的power。另外封装技术有限,封装上面的电感(inductance)会导致无法提供所需的快速变化的电流或power。
power和电流通常成正比,因此很难得到一个快速变化的电流。要一瞬间电流突然增大,只能慢慢的增大,不能一瞬间增大那么多。
结合两方面因素,促使我们不仅想要在设计时对功耗有更多的了解,而且在运行中要对power进行管理,而不能出现很多不想要的情况。