速腾|割韭菜最快的刀,叫激光雷达( 五 )
在1024科技日上,小鹏展示了城市NGP在P5上的实测视频:路线全长15公里,从停车场出发,经过广州闹市区,最终到达另一个停车场。这基本上,已经可以理解为“城市自动驾驶”了,但考虑到法规和用户安全等问题,在宣传时,自觉的企业还是会适可而止的。
很多车企都在说的“DOOR TO DOOR门到门”自动驾驶功能,包括搭载华为自动驾驶技术的极狐阿尔法S Hi版也是如此。但到今天能够拿出车辆实测视频的屈指可数,虽然大家都在批判特斯拉的自动驾驶不靠谱,但最起码人家在美国地区,通过OTA升级让车辆实现了城市自动驾驶的能力。
“特斯拉一直就是如此,他先装的非常强大的硬件,然后软件再做迭代。这个行业就是如此,硬件迭代周期非常慢,你现在不装,可能一、两年之后就落后了。但是,软件随时可以OTA。”上述自动驾驶供应商内部人士表示。其实,很多传统车企只学到了特斯拉的前半部分,学不到后半部分。
回到自动驾驶实现路径上来看,最核心的是解决三个问题:“我在哪?”、“我要去哪”、“我要如何去”。
按照行话来说就是:感知、决策与执行。更形象的来说,感知层就相当于人的五官,感知周围的环境,搜集数据传输到决策层;决策层相当于人的大脑,处理感知层传输的数据,输出相应的操作指令给执行层;执行层相当于人的四肢,执行大脑给出的指令。
激光雷达,因为具有可准确获取目标的三维信息、分辨率高、抗干扰能力强、探测范围广、近全天候工作等优点,在智能驾驶环境感知系统中占据了重要地位。但激光雷达仅仅只是一个数据收集的传感器,并不具备决策和执行的能力。换句话说,激光雷达只是承担了“眼睛”的角色。
有了千里眼还不够,关键还得靠利用好激光雷达所产生的数据,也就是靠算法。本质上,各类自动驾驶功能均依靠特定的应用算法开发实现。自动驾驶的环境复杂多变,从庞杂的激光雷达点云数据中准确快速地提取有效数据,并正确理解与分析有用信息是激光雷达应用算法开发的终极目标。
但还是会有不少问题。比如目前,自动驾驶激光雷达应用算法尚没有统一的框架和评判标准,具有较强的针对性和一定的特殊性。往往是精度越高、适应性越差,使用范围相当有限。面对各类复杂多变的自动驾驶场景,使算法具有扩展性和可移植性,提升算法的自适应性尤为必要。
另外还有数据驱动的功能迭代,也是考验车企的一道坎。
“感知和规划全都是由数据驱动。数据驱动的优势在于,智能驾驶系统中,遇到的corner case的数量级是超过百万级,这仅靠工程师去优化是不可能的。因此真正强大的智能驾驶一定要靠数据驱动,把大量概率小但会碰到的场景,通过数据化的方式去迭代和优化。”智己汽车联席CEO刘涛告诉虎嗅。
不过现在好了,传统汽车企业没有软件能力没关系,有钱就行。
“很多车企甚至自己没有软件的能力,直接跟激光雷达的供应商说,干脆你把算法直接给我捎里面完了。然后激光雷达供应商可能也没有算法,最后可能来找我们。”上述自动驾驶供应商内部人士表示。
这其实并不奇怪,在ADAS辅助驾驶领域,英特尔旗下的自动驾驶公司Mobileye曾一度占据了75%的市场份额。之所以成功,是因为它不只是做视觉传感器的普及者,而且是“视觉传感器+计算芯片+智能算法”的一整套解决方案商,这种接近于“即插即用”的合作模式备受车企喜爱。
文章插图
在2021年GTC大会,英伟达发布了完全自主设计的智能驾驶解决方案——NVIDIA DRIVE Hyperion 8,这是一款用于全自动驾驶系统的计算机架构和传感器组,它配备了英伟达自研芯片、英伟达推荐的摄像头、英伟达推荐的雷达,甚至还有英伟达标准的开发套件。
- coinbase|线下商家原本赚钱就不容易,2.58万或是韭菜价,或是买了配送费
- 割草机器人|大叶股份董秘回复:大叶割草机器人销量逐年上升
- 宽带用户|沧州长城宽带用户断网20余天无人修 客服:当地有关部门施工导致 城管热线:对存安全隐患低垂线缆进行割接
- 中国消费者|山姆被劝告别割自己的肉贴美国的脸,英特尔等已向中国消费者低头
- 软件|美国软件巨头的“无奈”:能收割全球市场,唯独在中国赚不到钱?
- 元戎|速腾聚创与元戎启行达成战略合作 推动L4自动驾驶前装量产落地
- 特斯拉|特斯拉350元哨子暴力拆解:切割干废几个“飞轮”
- 买盲盒送套餐,肯德基也开始“割韭菜”,意外催生出一个新产业
- 收割|什么都不会怎么做知识IP?
- 库克即将“发力”,iPhone SE3性能小钢炮,有望收割5G市场!