姚明|群雄并起 隐私计算创业人的前路在哪里?——七位大咖论道 |GAIR 2021( 二 )


此外,在工业互联网、车联网及生活化的场景,越来越多的机构开始注重在业务场景中引入外部第三方数据,并在引入的过程中保障这些数据的使用安全和客户隐私不泄露等诉求。所以,其实隐私计算的行业客户在发生泛化,越来越多的行业客户在对隐私计算产生诉求,这是第一个变化。
第二,隐私计算技术的应用在深化。去年我们在面对大部分客户的时候,客户会关注:隐私计算到底是什么?隐私计算到底有几种技术路径?但到了今年上半年,大家关注的点是:你的隐私计算技术和其他家相比有什么特点?我能怎么用?现在,我们发现银行、保险客户会问更精准的业务问题:我用了你的隐私计算技术,能给我带来哪些数据资源?能帮我改善哪些业务效果?比如风控模型的KS值能达到多少,营销的ROI是否能有明显提升?这些说明客户对隐私计算技术由好奇到试用,到希望用它来改善业务,这是客户心态和需求上的同步变化。
3、数据源厂商对隐私计算更感兴趣
富数吴海斌有着近20年的金融经验背景,投入到隐私计算行业的他表示:“隐私计算给金融机构打开了一个新世界的大门。”
过去金融机构传统建模都会结合行内数据或直连外部相关数据,但是随着政策法规的落地,有些数据已经不能使用,但是拓展数据的话,就需要让数据保证可用不可见,既安全又合规。数据源厂商更加青睐隐私计算这一新兴技术,一来可以让数据足不出户,保障数据的安全性,二来,数据价值得到保证和管理,每次调用数据的时候都是透明的、可控的。
同时,吴海斌表示隐私计算也为保护个人信息产生了一定作用,从而对一些行业的运营模式促进了变革,比如富数科技人脸识别案例就是一个典型的创新,“我们基于多方安全计算的人脸识别解决方案,可以让校验数据方并不知晓被检验人的身份,但又能做出是否为本人的正确判断,实现个人隐私的保护。”
这种技术在以前是不可想象的,而富数的研发团队让其在性能上实现了从十几秒到几秒,甚至向毫秒飞跃,这其实已经达到可以商业应用的性能了,由此也开始改变业务模式。
4、用户需求从“大而全”到“小而精”越来越清晰
瑞莱智慧的徐世真分享了他两年来对隐私计算行业的观察。他认为用户需求从“大而全”到“小而精”越来越清晰。
以前用户对隐私计算的场景和能力还处在探索中,追求大而全,MPC、联邦学习都要使用,多种算法和功能都要涵盖,但是如果问将来如何使用,可能还比较迷茫。现在用户已经了解哪个模块可以解决哪个问题,同时针对大数据下的某项具体业务有了较为清晰的需求。
但是随之而来的是小数据变大数据的问题,以前百万级别的数量现在变为亿级或十亿级,TB甚至PB级别。这一问题也是亟需解决的一大难题。
姚明|群雄并起 隐私计算创业人的前路在哪里?——七位大咖论道 |GAIR 2021
文章插图

二、侯锐:多行业隐私计算的可复制性局限可能会限制公司的发展,这个问题如何解?
说到商业导向,其实当我们谈商业的时候有一个另外的问题,可复制性。比如在金融领域,这里面存在可复制性和规模化挑战的问题。比如公司A做了工行,但可能到交行就搞不定了,需要另一个。复制性和通用性的潜在局限可能会限制公司的发展,大家对这个问题怎么看?
星云Clustar CTO 张骏雪表示,隐私计算还是相对比较早期的技术,从技术发展到场景应用并没有太长时间,一定程度上存在产品难以复制的问题。星云Clustar在隐私计算领域做了很长时间,我们把自己的业务分成三大块。从上到下,分别是通过隐私计算给客户输送合规合法的数据,帮助他们实现风控、营销等应用;第二,是数据平台、隐私安全、数据底座产品;最后,星云Clustar独特的算力产品。