菜鸟|菜鸟CTO:最好的物流科技就是能扎实服务好实体经济( 四 )


菜鸟|菜鸟CTO:最好的物流科技就是能扎实服务好实体经济
文章插图

“和传统靠App的产品不同,其实里面会有传感器识别人手动作,比如手下垂可以认定是休眠状态,手抬起来又变成激活状态,也就意味着这样做功耗很低。”
在窄窄的屏幕上进行简单的交互,在宽表示这要用低代码的方式,不再需要开发界面、流程,更多是将规则的东西用代码的形式展现。
基于菜鸟本身的低代码开发平台,在里面可以快速实现诸如小程序的应用,能达到天级的交付效率。并且,这类小程序的设计逻辑与微信、支付宝的类似。
在设计的时候没采用传统的安卓架构,而是自研轻量级的操作系统,毫秒级的开机时间,就算遇到了宕机的情况体验上是眼前一闪。相比传统的架构,从App退出后,需要重新登录,重新获取数据,而在这样的架构里没有。
在宽表示,“LEMO PDA是一个独立的终端,加共享的边缘设备,最终的成本肯定要比每个设备上都有专属的算力低很多。”
最终的结果可以看到,这样的产品设计方案,既能满足使用场景解决实际问题,又能降低生产成本,更能加速传统物流行业诸如仓库和分拨中心部分业务的数字化转型。
并且这些场景,能真实展现菜鸟懂物流、懂技术,深入到腹地切切实实为物流实体行业做事情。
什么才是最优解?物流离不开运输,也就离不开车辆调度。
前文提到,菜鸟获得2021年Franz Edelman finalist,在业内引起了巨大的反响,团队开发的Greed Solver涵盖在线决策、VRP、Binpacking和Online Assignment。
菜鸟人工智能部负责人、阿里巴巴供应链与运筹优化小组核心成员胡浩源(花名本华)向雷锋网表示,能获奖,离不开阿里和菜鸟丰富的业务场景,本身就有很多相关的场景挑战,比如菜鸟的车辆调度,以及盒马、饿了么等骑手的路线规划。
关于菜鸟决策优化的场景,本华表示,传统的方式之一是建模,然后使用求解器求解追求精确解,而Greed Solver从实际业务问题需要的求解特性出发,混合了启发式、GPU&分布式等高性能计算、机器学习与运筹优化融合等,与菜鸟的业务相融合,这也是“贴地”的具体展现。
和LEMO PDA的设计一样,在做决策优化的时候,团队先到线下,去仓库、分拨中心里体验工作,要做快递员感知路径,因为决策优化最终管理的是人而不是机器。
了解到真实的场景后,要开始寻找适合自己的发展路径。
而做决策优化有两条路线,一条追求通用求解,希望使用人员完成建模过程后,能够基本都使用求解器完成求解过程;另一条是特定求解,用贴地气的产品挖掘最大的商业价值,进而集中火力投入资源在局部形成极高密度,在这个垂直领域构建门槛优势。
菜鸟的Greed Solver选择了基于业务价值判断反推的特定求解, “这是两条完全不同的路线,通用求解器有更深的科学技术问题挖掘,特定求解器则是一个混合了科学、技术、工程、业务领域知识的融合工程。”更进一步,菜鸟的Greed Solver大力发展了实时求解相关的技术,在实际的业务场景中,比较难的并不是求得一个最优解,而是有限的时间求得一个尽可能好的解,和在信息不充分的情况下做实时决策,获得全局的一个最佳收益。
以派单为例,站在上帝视角,通过算法能算出最优解。然而实际过程中大部分是一个online决策的问题,基于当前的greedy分配未必是最优,需要考虑后续订单到来的可能性对于最优的影响,比如有些订单hold一下,就可以和后续的订单合并,在满足时效的同时提升骑手的效率。
比如跨境包裹,从中国到巴西的配送时间由原来的60天到十几个工作日,核心因素就是合单。很多海外消费者不会只买一个商品,那么包裹到了分拨中心就要等一下,看看能不能合起来。这个期间要权衡等待时间不要太长要满足消费体验,还不能为了弥补等待时间增加客户的成本。在宽坦言:“要满足成本低、服务好诸多因素,在过去的两年来,菜鸟通过物流技术解决了一批此类物流难题。”