菜鸟|菜鸟CTO:最好的物流科技就是能扎实服务好实体经济( 五 )


“贴地”意味着一定是先场景再AI说起研发Greed Solver,本华回忆道,这是基于本身阿里内部的业务需求,比如2016年应用到乡村物流,然后开始应用到零售通,逐渐应用到盒马,再到国外的Lazada,“回头看,这个业务的过程比较曲折,我们内部叫‘铁掌水上漂’。在伴随业务成长的同时,要有自己的技术定力往前一直走,因为相信,所以看见。”
“当时达摩院要做线性规划和混合证书规划的产品,大家研究要不要一起做,最终我们还是回到一开始决策的原则,我们基于自己的优势和资源,差异化的去解决特定的、业务价值显著的问题,往高频、实时决策、实用价值大的算法走,基于业务需求去建设技术能力。”
关于路径选择,在宽表示,第一,要从场景到AI;第二,要重视效率和效果并行;第三,产业互联网需要对行业、国家创造价值。
“其实四年前就定下来,我们要走就是分布式计算、高性能计算、机器学习和运筹优化的结合。”
首先,运筹优化并不是中国的优势领域,学科上需要向国外学习。但是国内的优势是有庞大的场景和数据,在大数据、大规模分布式机器学习上是有积累的,那么能不能把这几个领域结合起来?
其次,最优解和最快近似解是两回事,机器学习预测用于实际场景跟不上速度,场景稍纵即逝。
那么关于效果方面,从商业角度来看,本华表示衡量决策算法的好坏取决于实时决策的结果和站在上帝视角的全局最优的对比,比如online assignment追求的就是“近似最优”,并且工程实践与难度会更高,有许多严苛的实时求解约束。
“比如,online assignmen在一个业务场景最终计算能拉到每秒10万QPS,而一开始这个数值可能是500,那么500到10万的过程,使得最终效果能提高十几个点,简单来讲,其他的资源不变的情况下,我们成本更低、算得更快。”本华认为,从互联网角度,频率越高越有商业价值。那么对于业务而言,想要做到秒级求解考验的就不光是技术问题了。
提到效率,这里面需要相应速度、产品建设得非常快,遇到用户特殊需求,需要快速适配,要把开发提得很快,后来在算法上也要做一些低代码化的工作,为的就是保证效果的同时快速响应。
“如果求解时间是100、200毫秒级,我们只需要在这个时间下再提速。”
从成立至今,随着行业的不断发展演化,菜鸟团队逐渐沉淀形成一个非常体系的技术,而这可以支持实时决策非常多的领域,如装箱、派单、履行分单合单、服务器调度、流量分配、资金路由等。
写在最后一直以来,菜鸟都秉承“拥有技术自信,从场景出发”。
比如菜鸟无人车小蛮驴,关于由来在宽回忆道,2015、2016年的时候,关于整个物流科技未来发展的方向,大家预判到,从长期来看,物流能力需要大幅度提升,需要新型的智能要素的加入。
“我们的切入点是什么?就是仓库里面的AGV小车。”仓库是相对稳定的环境,菜鸟很快就把仓内自动化做成了行业标杆。
在配送端菜鸟选了在最后一公里低速无人驾驶领域探索,“2016年组建的团队,第一台车就做出来了。最早是在阿里巴巴的西溪园区给内部员工送快递,把包裹从园区的小邮局送到工位上。”
从阿里园区工位走出来,走到浙大校园里,再到部分物流园区,从一个仓库到另一个仓库,这些都说结合实际的应用场景,逐渐完善技术,前文提到的300台车、100万个包裹的规模,也能增加算法的准确性。
这也是“贴地飞行”的真实体现,从场景出发,贴合实际完善技术。
菜鸟|菜鸟CTO:最好的物流科技就是能扎实服务好实体经济